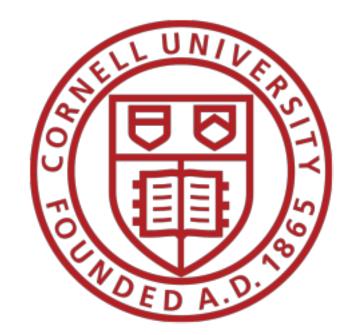
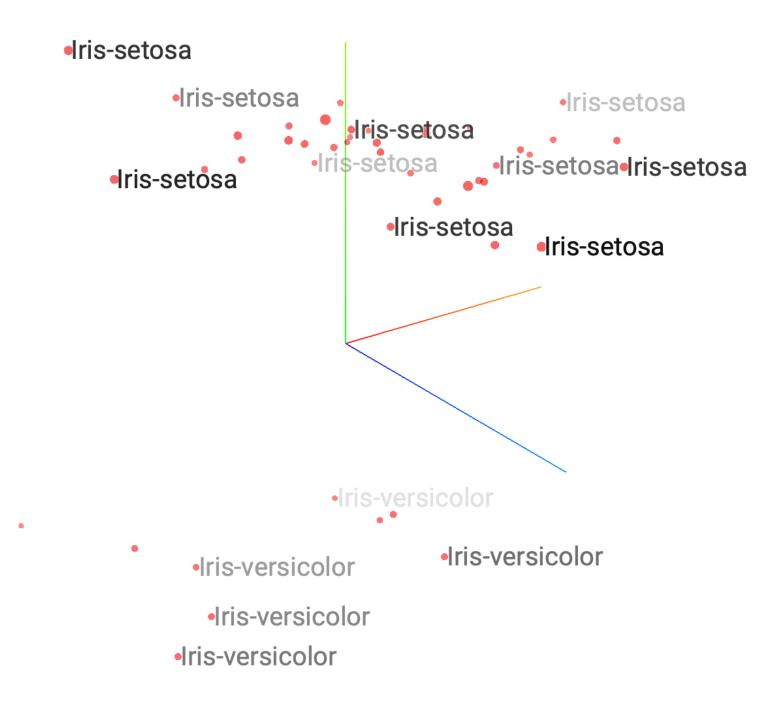
# Numerically Accurate Hyperbolic Embeddings Using Tiling-Based Models

Tao Yu & Christopher De Sa Department of Computer Science Cornell University



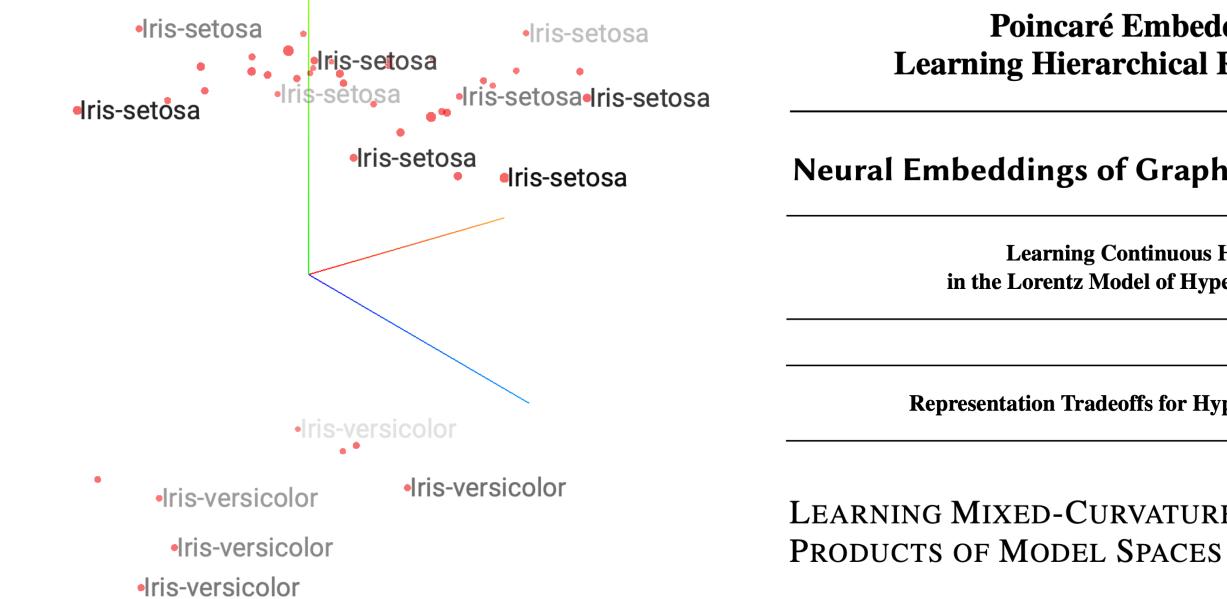


### Euclidean embedding:









.

### Hyperbolic embedding:

### Poster #1189

**Poincaré Embeddings for Learning Hierarchical Representations** 

**Neural Embeddings of Graphs in Hyperbolic Space** 

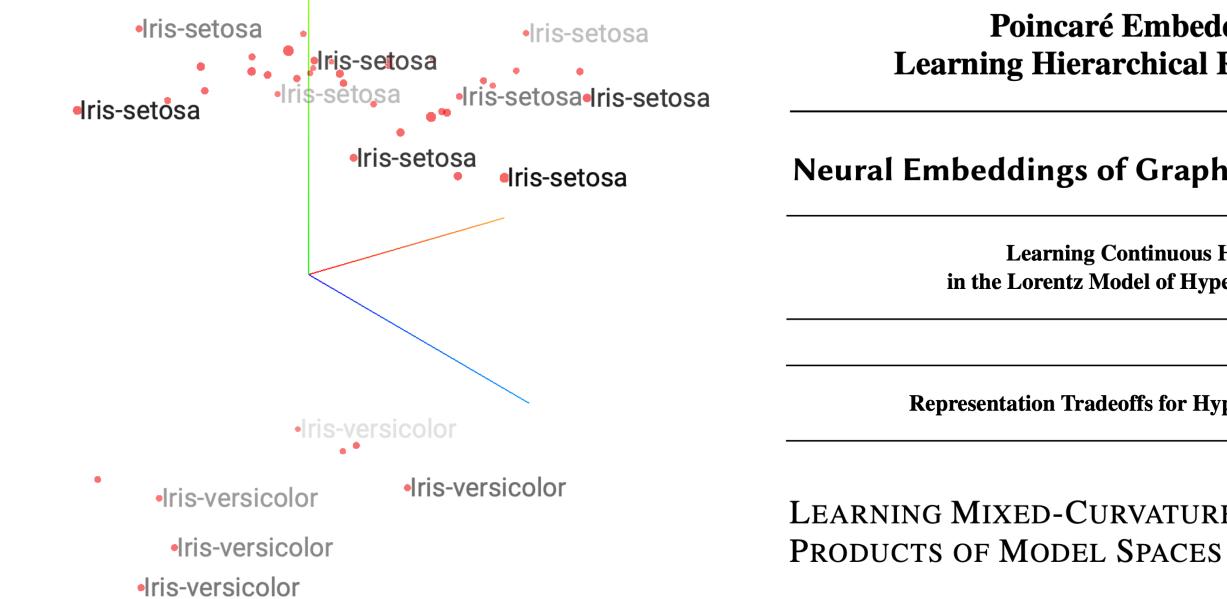
**Learning Continuous Hierarchies** in the Lorentz Model of Hyperbolic Geometry

**Representation Tradeoffs for Hyperbolic Embeddings** 

LEARNING MIXED-CURVATURE REPRESENTATIONS IN







### Hyperbolic embedding:

### Poster #1189

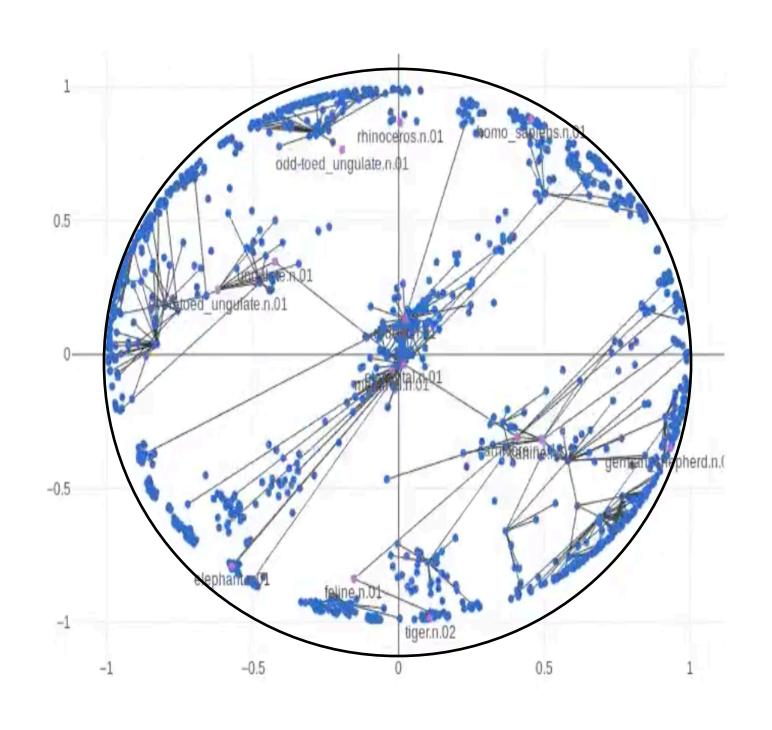
#### **Poincaré Embeddings for Learning Hierarchical Representations**

#### **Neural Embeddings of Graphs in Hyperbolic Space**

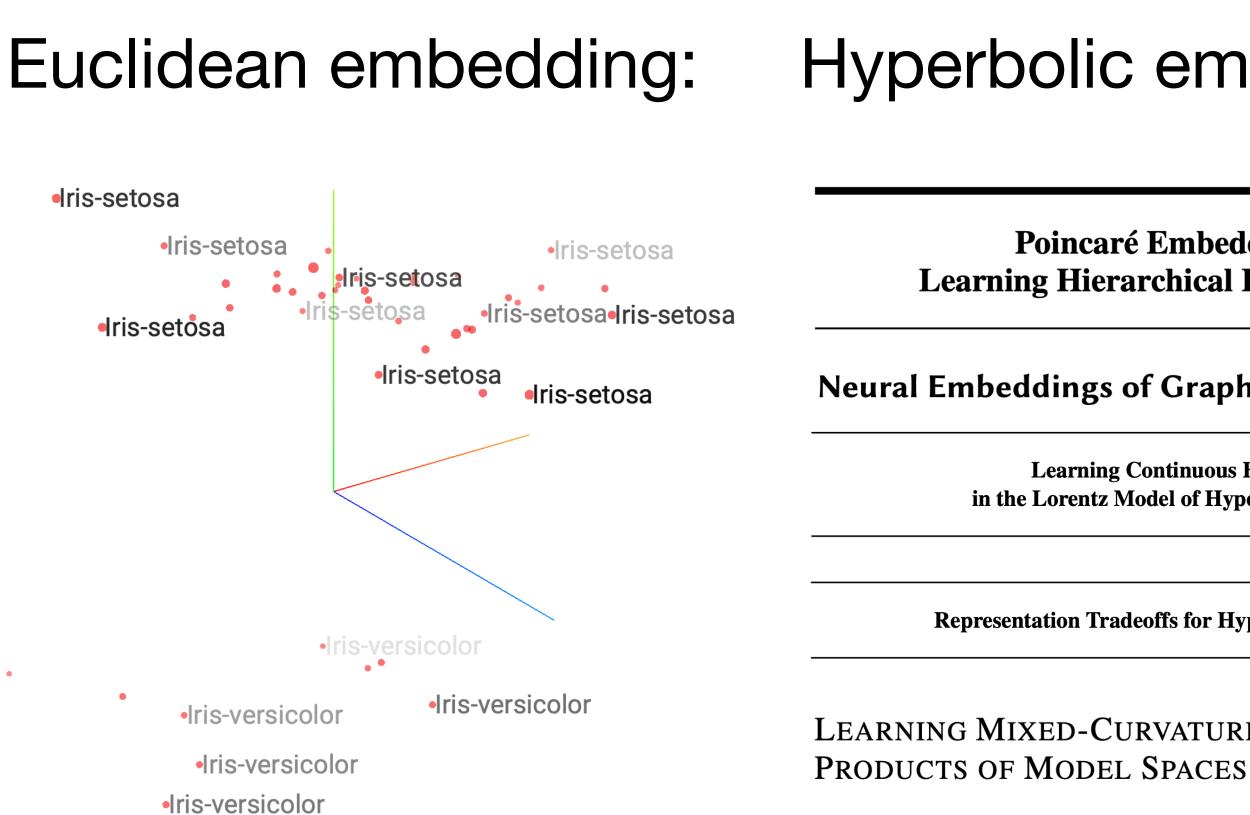
**Learning Continuous Hierarchies** in the Lorentz Model of Hyperbolic Geometry

**Representation Tradeoffs for Hyperbolic Embeddings** 

LEARNING MIXED-CURVATURE REPRESENTATIONS IN







### Area of a disk in the hyperbolic plane increases exponentially w.r.t. the radius (polynomially in Euclidean plane).

### Hyperbolic embedding:

### Poster #1189

#### **Poincaré Embeddings for Learning Hierarchical Representations**

#### **Neural Embeddings of Graphs in Hyperbolic Space**

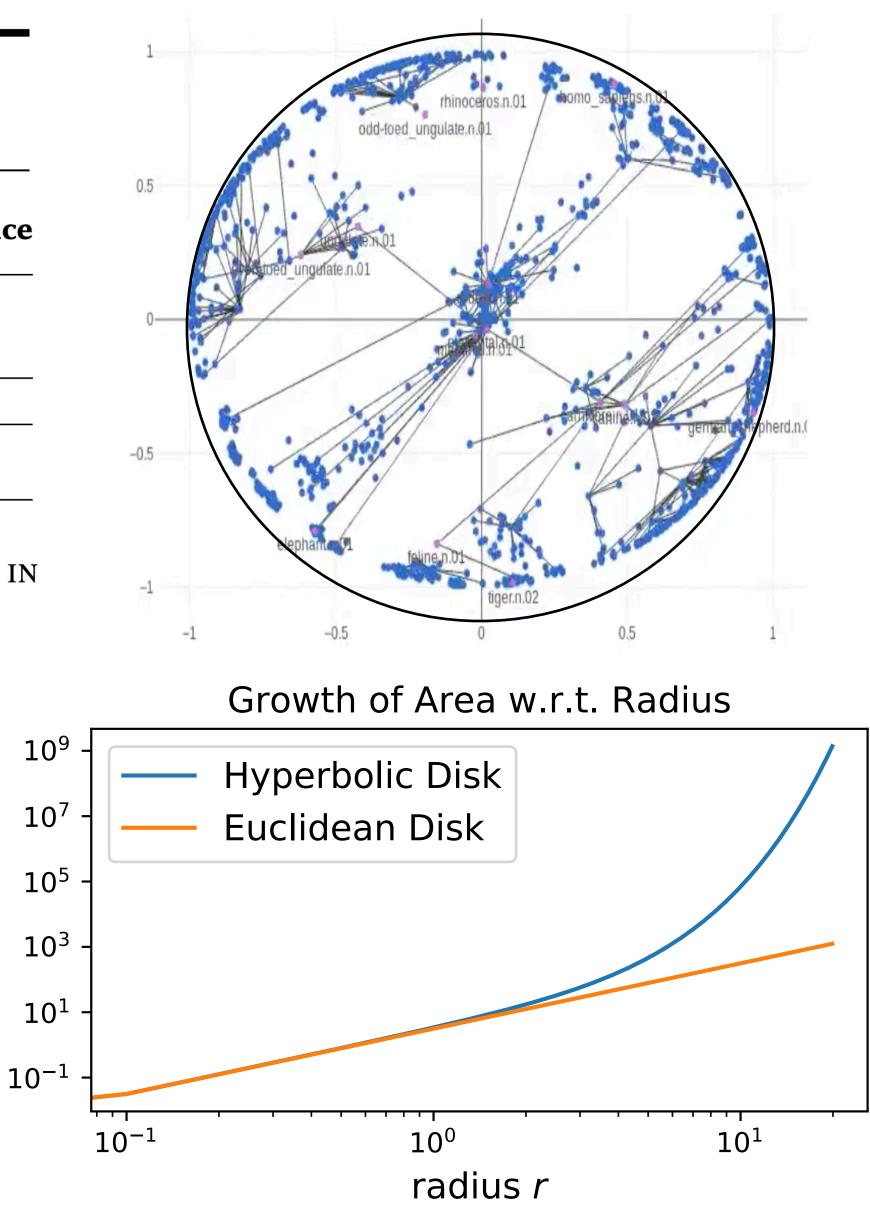
**Learning Continuous Hierarchies** in the Lorentz Model of Hyperbolic Geometry

**Representation Tradeoffs for Hyperbolic Embeddings** 

LEARNING MIXED-CURVATURE REPRESENTATIONS IN

 $A(\mathbf{D}_r)$ 



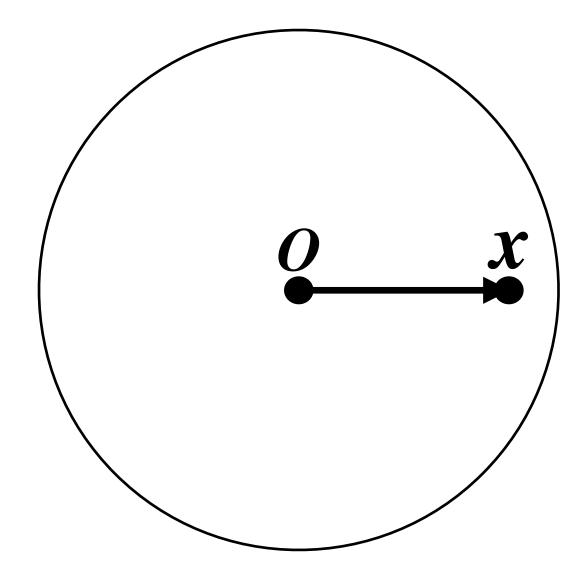




Hyperbolic embeddings are limited by numerical issues when the space is represented by floating-points, standard models using floating-point arithmetic have unbounded error as points get far from the origin.

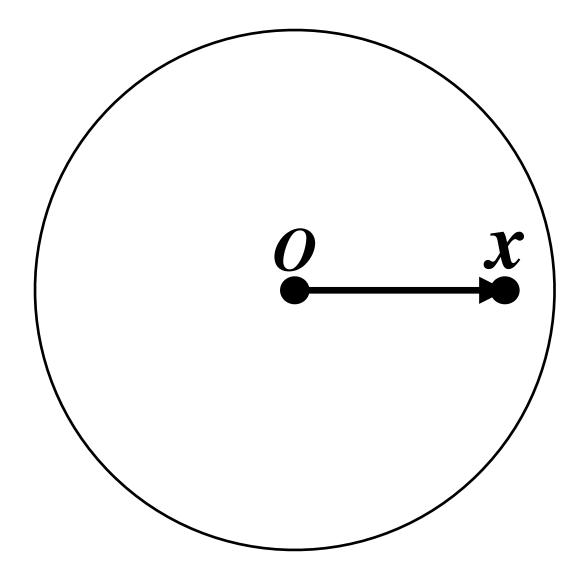


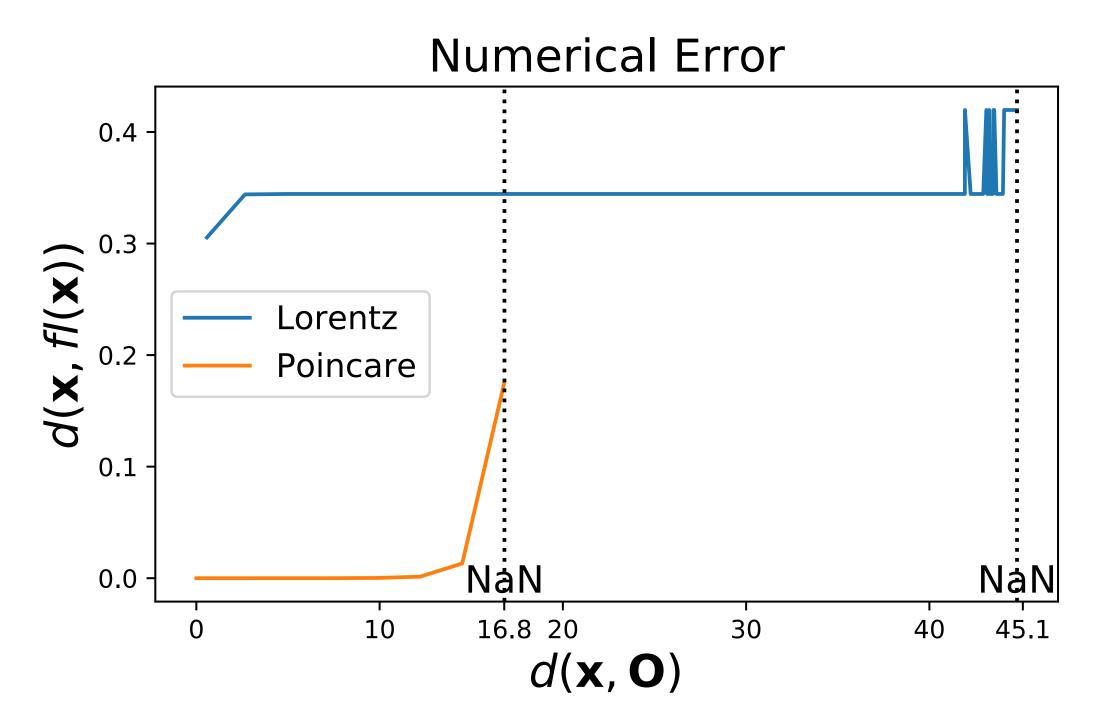
Hyperbolic embeddings are limited by numerical issues when the space is represented by floating-points, standard models using floating-point arithmetic have unbounded error as points get far from the origin.





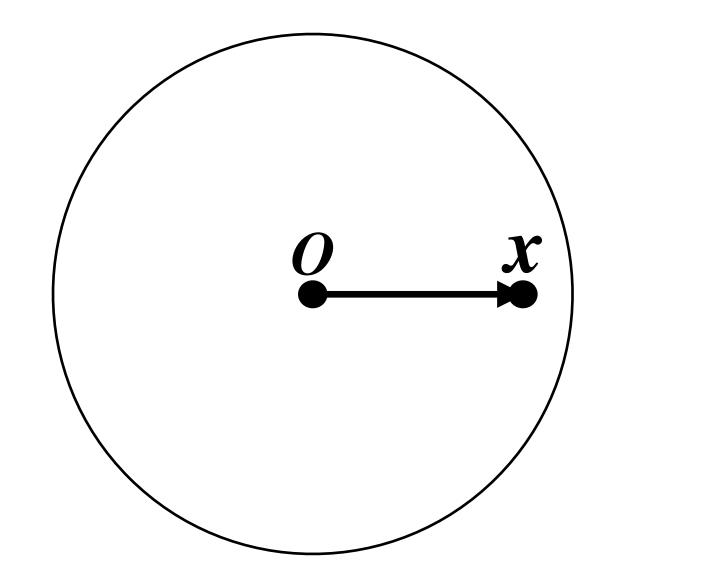
Hyperbolic embeddings are limited by numerical issues when the space is represented by floating-points, standard models using floating-point arithmetic have unbounded error as points get far from the origin.



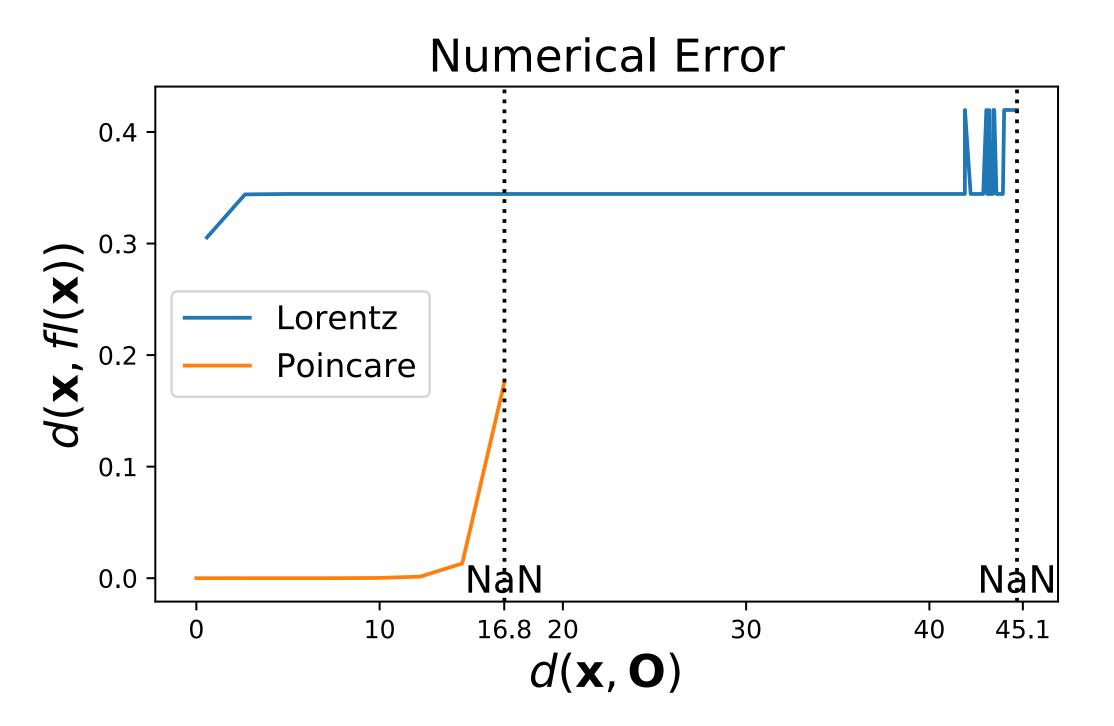




Hyperbolic embeddings are limited by numerical issues when the space is represented by floating-points, standard models using floating-point arithmetic have unbounded error as points get far from the origin.



Proved: For standard models of hyperbolic space using floating-point, there exists points where the numerical error is  $\Omega(\epsilon_{machine} \exp(d(\mathbf{x}, \mathbf{0})))$ .





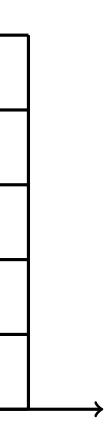


A solution in the Euclidean plane with constant error: using the integer-lattice square tiling, represent a point  $\boldsymbol{x}$  in the plane with

(1)Coordinates (i, j) of the square where x is located as integer; (2)Offsets of  $\boldsymbol{x}$  within that square as floating-points.

|     | $\overset{x}{\bullet}$ |  |
|-----|------------------------|--|
| (i, | $oldsymbol{j})$        |  |
|     |                        |  |





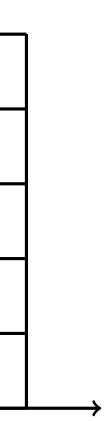
A solution in the Euclidean plane with constant error: using the integer-lattice square tiling, represent a point  $\boldsymbol{x}$  in the plane with

(1)Coordinates (i, j) of the square where x is located as integer; (2)Offsets of  $\boldsymbol{x}$  within that square as floating-points.

Proved: numerical error will be bounded everywhere and proportional to  $O(\epsilon_{machine})$ .

|                  | $\overset{x}{\bullet}$ |  |
|------------------|------------------------|--|
| $(oldsymbol{i},$ | <b>j</b> )             |  |
|                  |                        |  |





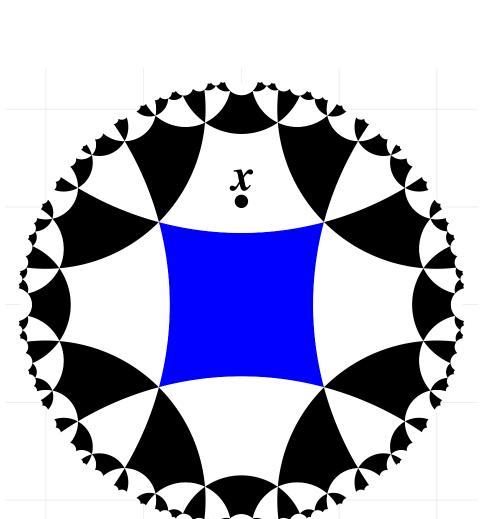
A solution in the Euclidean plane with constant error: using the integer-lattice square tiling, represent a point  $\boldsymbol{x}$  in the plane with

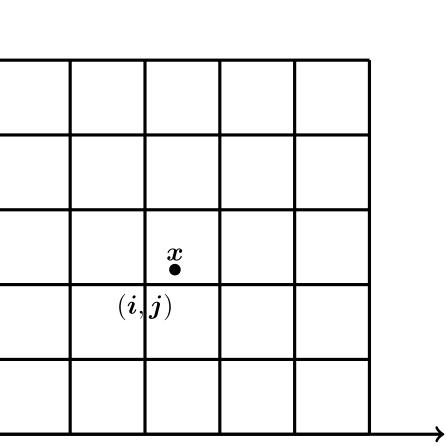
(1)Coordinates (i, j) of the square where x is located as integer; (2)Offsets of  $\boldsymbol{x}$  within that square as floating-points.

Proved: numerical error will be bounded everywhere and proportional to  $O(\epsilon_{machine})$ .

Do the same thing in the hyperbolic space: construct a tiling and represent  $\boldsymbol{x}$  with:

(1) the tile where  $\boldsymbol{x}$  is located; (2)Offsets of x within that tile as floating-points.





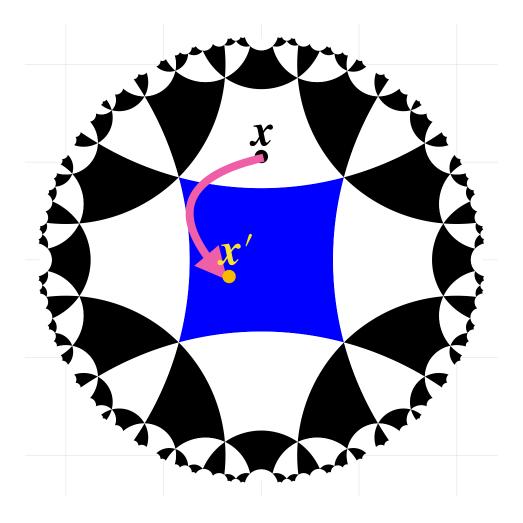


How to identify a tile in the tiling of the hyperbolic plane?



How to identify a tile in the tiling of the hyperbolic plane?

### **Isometries**!



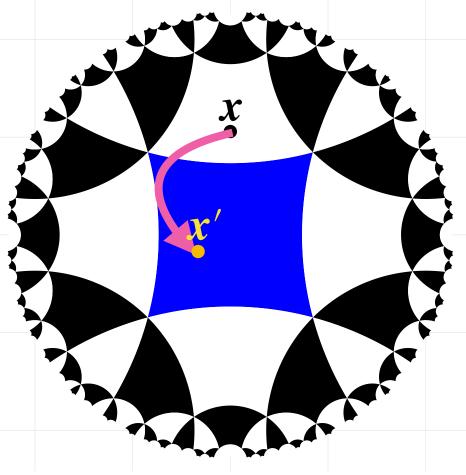


## How to identify a tile in the tiling of the hyperbolic plane? **Isometries**!

Construct a subgroup G of the set of isometries and represent x with

 $\mathcal{T}_{I}^{n} = \{(\boldsymbol{g}, \boldsymbol{x}') \in G \times$ 

Particularly, elements of G can be represented with integers, F is a bounded region.



$$\langle F: \mathbf{x}'^T g_l \mathbf{x}' = -1 \}.$$

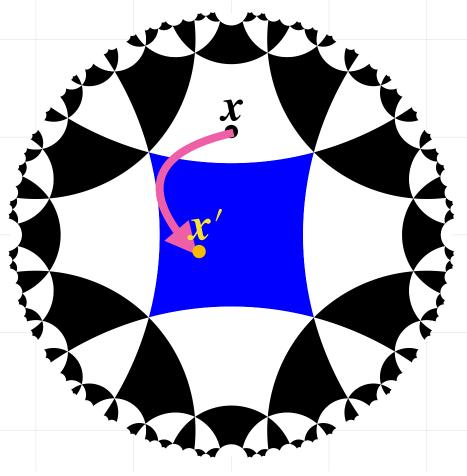


## How to identify a tile in the tiling of the hyperbolic plane? **Isometries**!

- Construct a subgroup G of the set of isometries and represent  $\boldsymbol{x}$  with
  - $\mathcal{T}_{l}^{n} = \{(\boldsymbol{g}, \boldsymbol{x}') \in G \times$

Construct (non-group-based) tilings in high dimensional hyperbolic space and represent points with more integers.

### Poster #1189



$$\langle F: \mathbf{x}'^T g_l \mathbf{x}' = -1 \}.$$

Particularly, elements of G can be represented with integers, F is a bounded region.



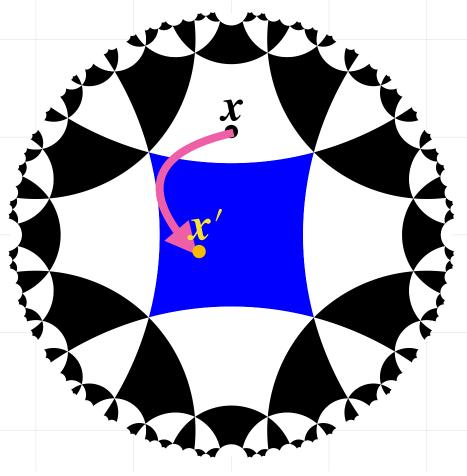
## How to identify a tile in the tiling of the hyperbolic plane? **Isometries!**

Construct a subgroup G of the set of isometries and represent  $\boldsymbol{x}$  with

$$\mathcal{T}_l^n = \{ (\boldsymbol{g}, \boldsymbol{x}') \in \boldsymbol{G} \times \boldsymbol{F} : \boldsymbol{x}'^T \boldsymbol{g}_l \boldsymbol{x}' = -1 \}.$$

Particularly, elements of G can be represented with integers, F is a bounded region.

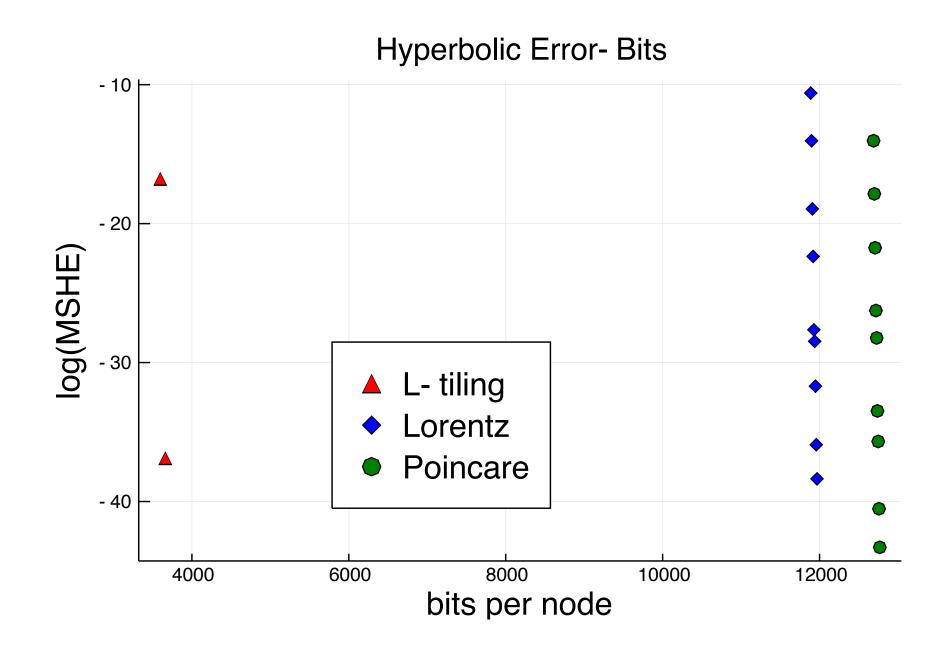
Construct (non-group-based) tilings in high dimensional hyperbolic space and represent points with more integers. Guarantees: numerical error is  $O(\epsilon_{machine})$  everywhere in the space. (Representation, distance, gradients ...)





# Applications: Compression

### Represent and compress hyperbolic embeddings in tiling-based models to that in the standard models on the WordNet dataset.



### Under the same MSHE, L-tiling model: $372 \text{ MB} \longrightarrow 7.13 \text{ MB} (2\% \text{ of } 372 \text{ MB})$ .

| Models              | size (MB)  | bzip (MB) |
|---------------------|------------|-----------|
| Poincaré            | 372        | 119       |
| Poincaré<br>Lorentz | 287<br>396 | 81<br>171 |
| L-Tiling            | 37.35      | 7.13      |



# Applications: Learning

Compute efficiently using integers in tiling-based models and learn high-precision embeddings without using BigFloats.

| DIMENSION | MODELS   | MAP                 | MR              |
|-----------|----------|---------------------|-----------------|
| 2         | Poincaré | $0.124{\pm}0.001$   | $68.75 \pm 0$   |
|           | Lorentz  | $0.382{\pm}0.004$   | $17.80 \pm 0$   |
|           | tiling   | $0.413{\pm}0.007$   | $15.26 \pm 0$   |
| 5         | Poincaré | $0.848 {\pm} 0.001$ | 4.16±0.         |
|           | Lorentz  | $0.865 {\pm} 0.005$ | <b>3.70</b> ±0. |
|           | tiling   | $0.869 {\pm} 0.001$ | <b>3.70</b> ±0. |
| 10        | Poincaré | $0.876 {\pm} 0.001$ | $3.47\pm 0.$    |
|           | Lorentz  | $0.865 {\pm} 0.004$ | $3.36\pm 0.$    |
|           | Tiling   | $0.888 {\pm} 0.004$ | $3.22\pm 0.$    |
|           |          |                     |                 |

Poster #1189

0.26 0.55 0.57 0.04 .12 .06 .02

.04 .02 On the largest WordNet-Nouns dataset, Tiling-based model outperforms all baseline models.



## Conclusion:

1. Hyperbolic space is promising, but the NaN problem greatly affects its power and practical use.



## Conclusion:

practical use.

2. Tiling-based models solve the NaN problem with theoretical guarantee, i.e., fixed and provably bounded numerical error.

### 1. Hyperbolic space is promising, but the NaN problem greatly affects its power and



## Conclusion:

practical use.

and provably bounded numerical error.

3. Tiling-based models empirically achieve substantial compression of embeddings with minimal loss, and perform well on embedding tasks compared to other models.

### 1. Hyperbolic space is promising, but the NaN problem greatly affects its power and

### 2. Tiling-based models solve the NaN problem with theoretical guarantee, i.e., fixed



# Thank You!

Poster #1189, East Exhibition Hall B+C #33, 5-7 pm