Poster #1189

Numerically Accurate Hyperbolic
Embeddings Using Tiling-Based Models

Tao Yu & Christopher De Sa
Department of Computer Science
Cornell University




Euclidean embedding:

Jris-setosa

Iris-setosa
;. ° plris-setosa

: Iris-setosaedlris-
dris-setosa o Ins-setosa

’Iris-setosa ,
* dris-setosa

Iris-versicolor

Iris-versicolor
Iris-versicolor

Poster #1189



Euclidean embedding:  Hyperbolic embedding: Poster #1189

Iris-setosa
Iris-setosa Poincaré Embeddings for
sris-setosa Learning Hierarchical Representations
Iris-setdsa _eIris-setosaclris-setosa

Iris-setosa Iris-setosa Neural Embeddings of Graphs in Hyperbolic Space

Learning Continuous Hierarchies
in the Lorentz Model of Hyperbolic Geometry

Representation Tradeoffs for Hyperbolic Embeddings

Iris-versicolor
LEARNING MIXED-CURVATURE REPRESENTATIONS IN

Iris-versicolor PRODUCTS OF MODEL SPACES
Iris-versicolor



Euclidean embedding:  Hyperbolic embedding: Poster #1189

“Iris-setosa ) Z
Jris-setosa Poincaré Embeddings for 5 S LTI S
O . ° ° ° ° ﬁ Pl B rhinoceros.n.01 / ®om = "
e o, gris-setosa . Learning Hierarchical Representations , od-oed_unguatendl  / f, N
. C | o . g ) o | N “ / b D, .
Jris-setdsa sélosa_dris-setosadris-setosa ) 39 &_{ 0\
® J.0 .| 'I \ . /l /
. | p | o
® - . . . . .". 1o Py @

Iris-setosa . tosa Neural Embeddings of Graphs in Hyperbolic Space I\ A fede p

il I/ K P - /0
Learning Continuous Hierarchies 0 ' k% 0/ L

in the Lorentz Model of Hyperbolic Geometry W |/ t zny
c‘/ v ,. "‘"

‘f o i qemargMtherd.n.
Representation Tradeoffs for Hyperbolic Embeddings o & . S L bz ;.,/
is-versicolol “Iris-versicolor S LAY pvt
o LEARNING MIXED-CURVATURE REPRESENTATIONS IN B *ﬁl S W
ol ri i tiger.n.02
Iris-versicolor PRODUCTS OF MODEL SPACES gk
. . -1 0.5 ) 0.5 |
“[Iris-versicolor



Euclidean embedding:  Hyperbolic embedding: Poster #1189

*Iris-setosa 1
Iris-setosa Poincaré Embeddings for
;. " fris-setosa Learning Hierarchical Representations
dris-setdsa s Iris-setosaslris-setosa
‘Iris-setosa dris-setosa Neural Embeddings of Graphs in Hyperbolic Space

Learning Continuous Hierarchies
in the Lorentz Model of Hyperbolic Geometry

Representation Tradeoffs for Hyperbolic Embeddings

Iris-versicolor

LEARNING MIXED-CURVATURE REPRESENTATIONS IN

Iris-versicolor PRODUCTS OF MODEL SPACES
Iris-versicolor

Growth of Area w.r.t. Radius

—— Hyperbolic Disk
Euclidean Disk

Area of a disk 1n the hyperbolic plane increases exponentially
w.r.t. the radius (polynomially in Euclidean plane).
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Hyperbolic embeddings are limited by numerical 1ssues when the space 1s represented by floating-points,
standard models using floating-point arithmetic have unbounded error as points get far from the origin.

Numerical Error
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Proved: For standard models of hyperbolic space using floating-point, there exists points
where the numerical error 1s Q(e,,,..... exp(d(x, 0))).
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A solution 1n the Euclidean plane with constant error: using the integer-lattice square tiling,
represent a point X in the plane with |

(1)Coordinates @,j) of the square where X 1s located as integer;
(2)Offsets of x within that square as floating-points.
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A solution 1n the Euclidean plane with constant error: using the integer-lattice square tiling,
represent a point X in the plane with |

(1)Coordinates @,j) of the square where X 1s located as integer;
(2)Offsets of x within that square as floating-points.

Proved: numerical error will be bounded everywhere and proportional to O(e,, i) -

Do the same thing 1n the hyperbolic space: construct a tiling and represent X with:

(1)the tile where Xx 1s located,;
(2)Oftfsets of x within that tile as floating-points.
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Group-Based Tiling:

How to identify a tile 1n the tiling of the hyperbolic plane?

Isometries!

Construct a subgroup G of the set of 1sometries and represent X with
I ={gx)eGXF: x’Tg,x’= —1}.

Particularly, elements of G can be represented with integers, F' is a bounded region.

Construct (non-group-based) tilings in high dimensional hyperbolic space and represent

points with more integers.
Guarantees: numerical error 1s O(e,, ... ) everywhere in the space. (Representation,

distance, gradients ...)
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Represent and compress hyperbolic embeddings 1n tiling-based models to that 1n the
standard models on the WordNet dataset.

Hyperbolic Error- Bits

‘ : : Models  size (MB) bzip (MB)
m T ° Poincaré 372 119
2, @
% 30 s L ? . Poincaré 287 81
- R Loﬁ'e';‘fi ) . Lorentz 396 171
i 4 @ Poincare : L—Tlhng 37 .35 713

4600 6600 8600 10600 12600
bits per node

Under the same MSHE, L-tiling model: 372 MB —> 7.13 MB (2% of 372 MB).



Applications: Learning

Compute efficiently using integers 1n tiling-based models and learn high-precision
embeddings without using BigFloats.

DIMENSION MODELS MAP MR
POINCARE 0.124+0.001 68.754+0.26
[LORENTZ 0.382+0.004 17.80+0.55
2 TILING 0.4134+0.007 15.26+0.57
POINCARE 0.8484-0.001 4.16+0.04
5 [LORENTZ 0.86540.005 3.70+0.12
TILING 0.8694+-0.001 3.70+0.06
POINCARE 0.8764+0.001 3.474+0.02
10 [LORENTZ 0.865+0.004 3.36+0.04
TILING 0.8884+-0.004 3.22+0.02

On the largest WordNet-Nouns
dataset, Tiling-based model
outperforms all baseline models.
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1. Hyperbolic space 1s promising, but the NaN problem greatly affects its power and
practical use.

2. Tiling-based models solve the NaN problem with theoretical guarantee, 1.e., fixed
and provably bounded numerical error.

3. Tiling-based models empirically achieve substantial compression of embeddings
with minimal loss, and perform well on embedding tasks compared to other models.



Thank You!

Poster #1189, East Exhibition Hall B+C #33, 5-7 pm



