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▸ Hypervectors = very high dimensional vectors

▸ e.g. , a point in the hyper dimensional space, or a 

corner of a hypercube

▸ Operations of HDC can be highly parallel

▸ Robust to noises … 

u ∈ {0,1}D, D = 10000

Hyperdimensional Computing (HDC)

Given a corner , how far is it to other corners?u

# of Corners at Hamming distance  to :  k u (D
k )
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Distance of a Corner to Other Corners

▸ 


▸ 


▸ A 600-bit wide “bulge” contains nearly all of the 
space!


▸ Two random vectors differ in ~5000 bits, such 
vectors are unrelated (orthogonal).


▸ Even 1/3 of the bits in a 10,000D vector are 
flipped, it can still be recognized, as it is closer to 
the original “error-free” vector than any unrelated 
vector.

P(
distance

D
≤ 0.47) ≤ a thousand-millionth

P(
distance

D
≥ 0.53) ≤ a thousand-millionth
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Hyperdimensional Representations

▸ Hypervectors in a high-dimensional space, hyperspace

– e.g.  (BSC),  (MAP-B),  (MAP-I),  (MAP-C),  (FHRR) …

– Given a random hypervector , most vectors in this hyperspace are orthogonal to 


– Independent random hypervectors are unrelated and can naturally represent objects that are 
semantically separate 


– Two hypervectors  and  that have a high-enough inner-product similarity can be classified as 
being related with high probability. 


▸ HDC represents data using random hypervectors and computes using a fixed set of operations: 
similarity, binding, bundling, and permutation.

{0,1}D {−1,1}D ℤD ℝD ℂD

v v

u v

▸ A similarity function  measures how close/similar two hypervectors are, typically defined as 

an inner product function   e.g. 

𝒮(u, v)

𝒮(u, v) =
1
D

D

∑
i=1

uivi {−1,1}D



▸ Bundling 

– Aggregate a set of hypervectors and output a representative hypervector that is maximally similarly to its inputs


– 


– For , :  (element-wise)

⊕

m

⨁
i=1

xi = arg max
g

m

∑
i=1

𝒮(g, xi)

{−1,1}D ⊕
m

⨁
k=1

xk = sgn(
m

∑
k=1

xk)
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Hyperdimensional Arithmetic

▸ Permutation 

– An invertible shuffling of the elements in a hypervector 

–  is non-similar to 

– Useful for encoding order and position information

Π

Πu u

▸ Binding  (commutative)

– Connect a pair of hypervectors  into a new hypervector 

–  is non-similar to  and 

– Similarity is preserved, i.e., 

– For , : coordinate-wise multiplication: 

⊗
u, v u ⊗ v

u ⊗ v u v
𝒮(u ⊗ w, v ⊗ w) = 𝒮(u, v)

{−1,1}D ⊗ (u ⊗ v)i = uivi
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▸ Goal: what is the currency of a country?

– Country: US, China

– Currency: Dollar, CNY

Example 1: Currency Retrieving

▸ Encode:

– Assign a random basis hypervector to each entity


• US: , China: 


• Dollar: , CNY: 

– Compute a filter representative 

𝐶1 𝐶2

M1 M2

S = (C1 ⊗ M1) ⊕ (C2 ⊗ M2)

▸ Query: what is the currency of the US? 

– Compute 


– Similar to  and , the latter one is not a meaningful entity and will 
not be similar to , i.e, 


– Find the currency hypervector with the highest similarity  and return 
corresponding currency


– A: Dollar

R = C1 ⊗ S = C1 ⊗ C1 ⊗ M1 ⊕ C1 ⊗ C2 ⊗ M2 = M1 ⊕ C1 ⊗ C2 ⊗ M2

M1 C1 ⊗ C2 ⊗ M2
M2 R = M1 ⊕ noise

𝒮(R, M)
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Example 2: MNIST 
▸ Dataset: MNIST


– Handwritten digit recognition task of 28x28 grey images

– 60000 train samples and 10000 test samples.

– 10 classes {0,1, …, 9}

▸ Inference

– At test time, a given test image is encoded through the same procedure to get , then compared to each class vector , outputs 

the class  with the highest similarity .
ttest sc

c 𝒮(ttest, sc)

▸ Encode:

– Draw 256 random basis hypervectors  from  to represent pixel intensities


– each  represents a pixel intensity 

– Bind all 784 (28x28) pixels by corresponding hypervectors 


– Binding is commutative, but pixels in an image have different meaningful relative positions, each pixel hypervector is 
shifted before binding to preserve that position information


– Assume the input pixel intensities are , then its encoded hypervector is  

{v0, v1, …, v255} {−1,1}D

vi i

p0, p1, …, p783 t = vp0
⊗ (Πvp1

) ⊗ ⋯ ⊗ (Π783vp783
)

▸ Learning via bundling


–
Bundle all the hypervectors that are from the same digit to generate a representative, i.e., class vector 


– Each training image is used only once

sc = ⨁
i|yi=c

ti
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Limits of HDC
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▸ The dimension of the hypervectors  —> expressivity of HDC, will increasing  solve all problems? D D

Limits of HDC

MLemma 1 =

1 − 1
2 − 1

2

− 1
2 1 − 1

2

− 1
2 − 1

2 1

▸ Question: Is there any similarity matrix in a HDC model that can not be achieved no matter how large 
 is? 

– A simple case when there are only 3 basic entities (or basis hypervectors), i.e., 

– Lemma 1: Binary HDC at any dimension (e.g. , MAP-B) can not express the matrix: 

D
n = 3

{−1,1}D

▸ Observation: the pair-wise similarities of basis hypervectors matters

– Given  basis hypervectors , the similarity matrix  is the 

similarity of pairs of hypervectors, i.e., 

– Similarity matrix —> expressivity of HDC

n v1, v2, …, vn ∈ {−1,1}D M ∈ ℝn×n

Mij = 𝒮(vi, vj)

OK, but what’s the result of this?
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▸ Lemma 2: Binary HDC at any dimension cannot learn the following task. 

– Consider a supervised learning task with input example set , output label set 

, and source distribution 


  


             for some small positive number .

– A HDC can learn this task if there exists a -dimensional encoding of  such that, when 

the bundling method is used on a training set of size  drawn from , the resulting 
classifier is the Bayes optimal classifier with arbitrarily high probability as  increases.

𝒳 = {0,1,2}
𝒴 = 𝒳

𝒫(x, y) = {1/9 + 2p x = y
1/9 − p x ≠ y

p
D 𝒳

N 𝒫(x, y)
N

Similarity Matrix —> Expressivity of HDC

▸ Lemma 3: Any HDC (e.g. MAP-C, FHRR)  that can express  can learn this task.MLemma 1

▸ An example task for which whether a HDC approach can learn the Bayes-optimal 
classifier depends on whether it can express . MLemma 1

Expressible similarity matrices —> expressivity of HDC!
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▸ Is sampling hypervectors randomly a good way? 

– In such a system, any hypervector used for an encoding (used to represent a data example) is 

constructed either by 

• independently sampling a binary hypervector where each entry has some probability  of 

being 1;

• or permuting and/or binding some pre-sampled hypervectors  to get 

encoding 

p

u1, u2, …, uK
v1, v2, …, vn

Limitations due to Initialization

𝔼[M] −

1 − 1
3 − 1

3

− 1
3 1 − 1

3

− 1
3 − 1

3 1
F

≥
2

3

▸ Further restricts the set of similarity matrices that can be expressed in expectation, where the target 
matrix can actually be expressed by binary HDC.

How to express more similarity matrices? 
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▸ More principled methods to construct hypervectors:

– If there is a target similarity matrix , directly instantiate hypervectors to match it in expectation


– Lemma 4: If the element-wise  is positive semi-definite, then Algorithm 1 produces 
hypervectors that, in expectation, exactly achieve , otherwise, some approximation to  is 
produced.

M
sin(

π
2

M)
M M

Solution 1: Encoding via Random Fourier Features

Mfail =

1 − 1
3 − 1

3

− 1
3 1 − 1

3

− 1
3 − 1

3 1

▸ Algorithm 1 can achieve more similarity matrices than the classical procedure:

– The similarity matrix  cannot be achieved in expectation by classical HDC initialization


– Algorithm 1 can achieve  as  is positive semidefinite

Mfail
Mfail sin(

π
2

Mfail)
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▸ However, as Lemma 1 shows, binary HDC has inherent limits, can’t express .

– Use non-binary hyperspace, e.g.,  (MAP-C),  (FHRR) to surpass the limits

– A continuous space, requiring significant hardware complexity overhead compared to binary HDC

MLemma 1
ℝD ℂD

Solution 2: Group HDC/VSA

▸ We propose a new class of HDC/VSA, finite group VSA, which effectively “interpolates” 
between them so as to bypass the similarity-representation limits of binary HDC without the need 
for a continuous space.

– Hypervectors in the hyperspace , where  is a finite group, theoretically extend and define 

similarity, binding, bundling operations accordingly

– Cyclic group VSA with , addition modulo  as binding , 

 —> binary HDC,  —>  (FHRR)

GD G

G = ℤ/nℤ = {0,1,…, n − 1} n ⊗
n = 2 n → ∞ ℂD

▸ Group VSA vs  (FHRR)

– Any similarity matrix that can be expressed by a finite Abelian group VSA can be expressed by 

FHRR

– There exists similarity matrices that can be expressed by a non-Abelian group VSA, but not by 

FHRR.

ℂD
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▸ Train an HDC model via bundling hypervectors that are in the same class 

– A fundamental bundling assumption: the class representative  is similar to each . This is not 

always true, depending on the number of vectors being bundled together

– The class vector  learned from bundling will be nearly orthogonal to each  in the class and no 

longer be its representative as  increases

𝕋c = {ti | label(ti) = c}
sc ti

sc ti
|𝕋c |

Learning instead of Bundling

▸ Represent the class representatives as a linear classifier, trained with SGD

– A linear layer of size , outputs per-class similarities, this helps learning class 

representatives and incurs minor training cost

– The inference cost of an HDC model remains the same as the bundling case. 

– For example, the binary HDC, the classifier executes a binarized matrix multiplication as 

inference, i.e., , where  is the input and  is the weight matrix. 

#class × D

O = X ⋅ sgn(W) X W
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▸ Datasets and tasks:

– ISOLET, a speech recognition dataset consists of audio signals (7719 samples). The goal is predicting which 

letter-name was spoken. 

– UCIHAR, a human activity recognition database, consists of features collected from smartphone sensors 

(10299 samples). The task is predicting which type of activity a human was performing. 

– MNIST and Fashion-MNIST (Xiao et al., 2017), which are more challenging for HDC.

Experiment - Performance

▸ RFF HDC already improves non-trivially over the baseline SOTA HDC.

▸ Group VSA improves the model accuracy further.

▸ Our HDC models learned from a single pass over the data achieve high accuracy.
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We analyze the circuit-depth complexity (CDC) to quantify the potential hardware latency:

▸ CDC is commonly used to analyze the computational complexity of Boolean functions, defined 

as the length of the longest path from the input to the output (measured by the number of two-
input gates along the path)


▸ We further assume that operations without data dependencies can be fully executed in parallel. 
This makes CDC independent of hardware design choices such as tiling 


▸ : feature vector length, e.g., 784 for an MNIST image; : hypervector dimension.N D

Experiment - Circuit Depth Complexity

Cyclic Group VSA of different orders on MNIST

▸ CDC on MNIST: Binary HDC 295, cyclic group  405, 1-bit RFF perceptron 1299G(23)
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▸ There is a clear connection between the class of expressible similarity matrices and the 
expressivity of HDC/VSA.


▸ This new notion of expressivity reveals the limits of HDC that computes with binary 
hypervectors, and meanwhile provides a hint on how we can improve it. 


▸ The nontrivial improvement from group VSA and the proposed techniques on HDC 
across various benchmarks suggests that this notion paves a new way towards the future 
development of HDC/VSA

Conclusion



Thank You!


